skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yu, Jin‐Quan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. (−)-Cylindrocyclophane A is a 22-membered C2-symmetric [7.7]paracyclophane that bears bis-resorcinol functionality and six stereocenters. We report a synthetic strategy for (−)-cylindrocyclophane A that uses 10 C−H functionalization reactions, resulting in a streamlined route with high enantioselectivity and efficiency (17 steps). The use of chiral dirhodium tetracarboxylate catalysis enabled the C–H functionalization of primary and secondary positions, which was complemented by palladium-catalyzed C(sp2)–C(sp2) cross-couplings, resulting in the rapid formation of the macrocyclic core and all stereocenters with high regio-, diastereo-, and enantioselectivity. The use of a late-stage palladium-catalyzed fourfold C(sp2)–H acetoxylation installed the bis-resorcinol moieties. This research exemplifies how multilaboratory collaborations can produce substantial modernizations of complex total synthesis endeavors. 
    more » « less
    Free, publicly-accessible full text available November 8, 2025
  2. Abstract The search for more effective and highly selective C–H bond oxidation of accessible hydrocarbons and biomolecules is a greatly attractive research mission. The elucidating of mechanism and controlling factors will, undoubtedly, help to broaden scope of these synthetic protocols, and enable discovery of more efficient, environmentally benign, and highly practical new C–H oxidation reactions. Here, we reveal the stepwise intramolecular SN2 nucleophilic substitution mechanism with the rate-limiting C–O bond formation step for the Pd(II)-catalyzed C(sp3)–H lactonization in aromatic 2,6-dimethylbenzoic acid. We show that for this reaction, the direct C–O reductive elimination from both Pd(II) and Pd(IV) (oxidized by O2oxidant) intermediates is unfavorable. Critical factors controlling the outcome of this reaction are the presence of the η3-(π-benzylic)–Pd and K+–O(carboxylic) interactions. The controlling factors of the benzylic vs ortho site-selectivity of this reaction are the: (a) difference in the strains of the generated lactone rings; (b) difference in the strengths of the η3-(π-benzylic)–Pd and η2-(π-phenyl)–Pd interactions, and (c) more pronounced electrostatic interaction between the nucleophilic oxygen and K+cation in the ortho-C–H activation transition state. The presented data indicate the utmost importance of base, substrate, and ligand in the selective C(sp3)–H bond lactonization in the presence of C(sp2)–H. 
    more » « less